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I.         Members of the team 
This Global Food Security-support Analysis Data 30-m (GFSAD30) Cropland Extent-Product of Southeast and 

Northeast Asia (GFSAD30SEACE) was produced by the following team members. Their specific role is 

mentioned. 

 

Mr. Adam Oliphant, Geographer, United States Geological Survey (USGS), led the GFSAD30SEACE product 

generation effort. Mr. Oliphant was instrumental in the design, coding, computing, analyzing, and synthesis of 

the Landsat-7 and 8-derived nominal 30-m GFSAD30SEACE cropland product of Southeast and Northeast Asia 

for the nominal year 2015. He was also instrumental in writing the manuscripts, ATBD, and user documentation. 

 

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey, is the Principal Investigator 

(PI) of the GFSAD30 project. Dr. Thenkabail was instrumental in developing the conceptual framework of the 

GFSAD30 project and the GFSAD30SEACE product. He made a significant contribution in writing the 

manuscripts, ATBD, user documentation, and providing scientific guidance on the GFSAD30 project. 

 

Dr. Jun Xiong, Research Scientist, Bay Area Environmental Research Institute (BAERI) at the United States 

Geological Survey (USGS), assisted in the coding and computing required for this project. He also assisted in 

writing the ATBD and user documentation. 

 

Dr. Pardhasaradhi Teluguntla, Research Scientist, Bay Area Environmental Research Institute (BAERI) at the 

United States Geological Survey (USGS), provided input and insights on cropland extent product generation. 

 

Dr. Russell G. Congalton, Professor of Remote Sensing and GIS at the University of New Hampshire, led the 

independent accuracy assessment of the entire GFSAD30 project including GFSAD30SEACE. 

 

Ms. Kamini Yadav, PhD student at the University of New Hampshire, made major contributions to the 

independent accuracy assessment directed by Prof. Russell G. Congalton. 

 

Mr. Richard Massey, PhD student at the Northern Arizona University, shared his expertise in cloud computing 

and contributed the pixel sieving algorithm and code used in image post-processing 

 

 

II.         Historical Context and Background Information 
In order to maintain food and water security in the future, monitoring global croplands is a must. Unfortunately, 

currently available cropland products have major limitations. Current cropland maps feature disadvantages such 

as coarse resolution, difficulties in differentiating irrigated areas from rainfed areas, absence of precise spatial 

locations of croplands, an absence of crop types and cropping intensities, and the absence of a web/data portal for 

the distribution of these products.  The goal of the Global Food Security Support Analysis Data @ 30-m 

(GFSAD30) project is to remove these limitations.  

 

This algorithm theoretical basis document (ATBD) contains an account of, in particular, the GFSAD30 cropland 

extent product for Southeast and Northeast Asia (SE and NE Asia) (GFSAD30SEACE, Table 1), which includes 

SE Asia (ASEAN member states), NE Asia (Japan and North and South Korea), the Indonesian Archipelago, 

Melanesia, Micronesia, and Polynesia, produced using Landsat-7 and 8 time-series satellite sensor data.   

 
 

https://plus.google.com/117927604440673369842
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Table 1. Basic information of the Global Food Security support-Analysis Data @ 30-m cropland 

extent product for Southeast and Northeast Asia (GFSAD30SEACE). 

Product Name Short Name Spatial Resolution Temporal Resolution 

GFSAD 30-m Cropland Extent 

Product of SE and NE Asia 
GFSAD30SEACE 30-m nominal 2015 

 

   III.         Rationale for Development of the Algorithms 

Mapping cropland extent, as well as establishing location and area is essential for continuing food security.  This 

knowledge is also essential for studying relationships with water, health, socio-economic, geo-political, 

environmental, and ecological factors (Thenkabail et al., 2010; Bruinsma 2011).  The availability of accurate 

maps is also required for development of all higher level cropland products.  These products include crop watering 

method, cropping intensities, cropland fallows, crop-type maps, and assessment of cropland and crop water 

productivity.  A lack of certainty in the cropland extent map effects the certainty of all higher level cropland 

products.   Unfortunately, reliable cropland extent maps that are of sufficiently high spatial resolution do not exist 

for the entire study area.  The study area features many limitations, such as persistent cloud cover, aquaculture, 

and permanent plantations that are hard to distinguish from native forests. 

 Multitemporal classification of satellite imagery has become an important tool in land-use and land-cover change 

(LULC) science at the regional, national, continental, and global scale (Giri et al. 2003). Until recently, such 

analysis at the continental and global scales were restricted to course resolution imagery like Advanced Very-

High-Resolution Radiometer (AVHRR) 1 km and Moderate-resolution Imaging Spectroradiometer (MODIS) 

250m-500m (Gumma et al. 2016). Due to the expansion of parallel processing and huge data centers, it is now 

possible to create global classified maps using Landsat 30m imagery for Global Forest Cover, (Hansen et. al 

2013) and GlobeLand30 (Chen et al. 2015). Although Chen’s team has produced a global landcover map at 30 m 

resolution, it is not optimized for agricultural mapping and significant errors between GlobeLand30 and national 

agriculture maps exist (Brovelli et al. 2015). Recently, 30 m resolution cropland maps have been created for large 

portions of SE and NE Asia but they fail to accurately map the entire spatial extent included here (Cheng et al. 

2016; Hurni et al. 2017; Kontgis et al. 2015). 

This document describes the development of the 30-m Cropland Extent-Product of SE and NE Asia 

(GFSAD30SEACE). The approach involved a supervised Random Forest (RF) classifier to retrieve crop extent 

results from pixel-based classification to provide precise agriculture field boundaries at 30-m resolution. 

 

IV.         Algorithm Description 
 

The methodology used in this project (Figure 1) is briefly described in this paragraph to provide an overview and 

presented in detail in subsequent sections of this ATBD document. The process (Figure 1) involved combining 

year 2013-2016 16-day time-series Landsat 7 and 8 30-m data (10 bands) along with SRTM 30-m data (slope and 

elevation). All available spectral bands were used as input variables in addition to three calculated spectral indices 

(Table 3). First, the data were pre-processed by cloud mask and gap-filling on Google Earth Engine (GEE, 

Gorelick et al., in press). Second, seasonal mosaics were created for three periods when many of the crops in SE 

and NE Asia are grown: Period 1 (January-April), Period 2: May-August, and Period 3: September-December. 

Additionally, the standard deviations for all Landsat 7 and 8 images acquired in 2015 for the 10 bands above were 

computed. The resulting 42-band mosaic was used as the base imagery for the classification as listed in Figure 1.  

Third, reference data were generated throughout SE and NE Asia to train the RF classifiers. A total of 7,849 
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reference samples were used for this purpose. Fourth, the trained RF classifiers were used to classify for cropland 

or non-cropland by utilizing the 42-band mosaic. Fifth, the composite cropland product of SE and NE Asia was 

evaluated for accuracy using 1,750 test samples. The process was iterated until adequate accuracies were attained. 

During this step, the validation data was only available to the accuracy assessment team. Finally, the 

GFSAD30SEACE product can be visualized on croplands.org and can be downloaded from NASA’s LP DAAC. 

 

Figure 1. Flowchart of mapping methods for cropland extent product of SE and NE Asia utilizing 

Landsat 7 and 8 imagery for the nominal year 2015. 

 

a.     Input data 

i.   Study Area Stratification 
 

GFSAD30 cropland extent product for Southeast and Northeast Asia (SE and NE Asia) (GFSAD30SEACE, Table 

1), that includes SE Asia (ASEAN member states), NE Asia (Japan and North and South Korea), Indonesian 

Archipelago, Melanesia, Micronesia, and Polynesia. Since temperature regimes, precipitation patterns, crop 

calendars, and agricultural practices vary widely across SE and NE Asia, the area was broken into 7 refined agro-

ecological zones (RAEZs) (Suepa et al 2016). These zones are based on FAO agro-ecological zones that were 

modified by the author to align with political boundaries and distinct agricultural areas. The 7 RAEZs are shown 

in Figure 2.  
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Figure 2. Southeast Asia study area and refined agro-ecological zones (RAEZs). Southeast Asia was broken 

into 7 zones for the pixel-based supervised Random Forest cropland extent classification. Zones were chosen 

based on temperature, seasonal precipitation, and farming practices. The zones are as follows: Zone 1 = 

Mainland SE Asia; Zone 2 = Philippines; Zone 3 = Sumatra and West Malaysia; Zone 4 = Java and Bali; Zone 

5 = East Malaysia, Kalimantan, and Brunei; Zone 6 = Northeast Asia; Zone 7 = Pacific Island Nations. 

 

ii.   Reference Samples 

Reference data that were used to train and validate the cropland product were collected by visually interpreting 

high spatial resolution imagery (VHRI). We generated the reference data by creating 400 random samples per 

zone, representing a 90 m x 90 m area. The samples were visually interpreted by referencing sub-meter to 5-meter 

very high spatial resolution imagery (VHRI) data throughout SE and NE Asia, made available to us from the 

National Geospatial Intelligence Agency (NGA). Samples were removed in areas where VHRI was not available 

and additional samples were placed in areas with poor classification results (Oliphant et al. 2017). There were a 

total 7,849 samples from VHRI spread across SE and NE Asia (see table 2). The spatial distribution is shown in 

Figure 3. The data used is available on at the following web site: https://croplands.org/app/data/search. 
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Table 2. Reference training data for each of the 7 refined agro-ecological zones (RAEZ’s). 

 

Zone Region 

Cropland 

Training 

Samples 

Non 

Cropland 

Training 

Samples 

Total 

Training 

Samples 

Land 

Area 

Land Area 

per Sample 

    # # # km2 km2 /# 

1 Mainland SE Asia 1,326 1,267 2,593 1,939,900 748 

2 Philippines   350   330   680   300,000 441 

3 Sumatra & Malaysia   305   317   622   604,100 971 

4 Java & Bali   298   272   570   134,100 235 

5 Kalimantan   257   349   606   743,300 1227 

6 Japan & Korea   460   481   941   598,700 636 

7 Pacific Island Nations   614 1,223 1,837 1,253,800 683 

  Total 3,610 4,239 7,849 5,573,900 710 

 

 

Figure 3. Classification zoning, training and validation samples of cropland extent product 
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iii.   Satellite Imagery: Landsat 7 and 8 
 

Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) and Landsat 8’s Operational Land Imager (OLI) sensors 

are very useful in landcover mapping because the imagery is freely available and the sensors have excellent 

radiometric and spectral calibration (Roy et al. 2014). Landsat 7 and 8 each have a 16-day revisit time, 8 days if 

both sensors are used.  However, the effective revisit time is much longer due to cloud cover and failure of Landsat 

7 scan line corrector (Li et al. 2017). 

 

ETM+ and OLI bands corresponding to blue, green, red, near infrared IR, SWIR 1, SWIR 2, and one thermal 

band along with the vegetation indices NDVI, NBR2, and LSWI were used for this classification (Table 3). Due 

to stray light entering OLI’s thermal IR sensor, only Band 10 centered at 10.9 µm was used for thermal analysis 

of Landsat 8. The NDVI (Normalized Difference Vegetation Index) was selected to help distinguish dense 

vegetation including forests. The NBR2 (Normalized Burn Index 2) was chosen to distinguish barren and urban 

lands from other land cover.  The LSWI (Liquid Surface Water Index) was included to help separate rice paddy 

and other bodies from land cover (Kontgis et al. 2015). Landsat TOA (top of atmosphere) reflectance was used 

instead of surface reflectance due to the limited temporal availability of Landsat 7 and 8 surface reflectance 

imagery in GEE at the time of classification. Landsat TOA imagery was provided by USGS according to 

methodology defined in the USGS Landsat Guidebooks (USGS 2017; USGS 2016).  

 

Table 3. Characteristics of Landsat 7 and 8 data used in the study along with band indices. 

 

Note: NIR = near infrared, SWIR = shortwave infrared, OLI = operational land imager, ETM+ = Enhanced Thematic Mapper plus, 

NDVI = normalized difference vegetation index, NBR = normalized burn ratio, LSWI = land surface water index. 

 

Cloud-free image composites were generated for 3 periods DOY 1-120, 121-240, and 241-365. Periods were 

chosen that approximately aligned with the crop growing seasons, temperature and precipitation trends and could 

be uniformly applied across all of SE and NE Asia (World Bank 2016). To insure at least one cloudfree pixel per 

season, data from 2013-2016 were used to form composites. The period composites were calculated by taking the 

median value from all unmasked pixels within the period within 2013-2016.  Additionally, in order to capture 

interannual variation, a standard deviation band was computed for each of the 10 bands for the year 2015 to target 

the classification as nominal 2015.  

Topographic information was included as an input variable in addition to the spectral information. Elevation and 

slope bands derived from the Shuttle Radar Topography Mission (SRTM) digital elevation model Version 3 (Farr, 

2007) at one arc-sec (approximately 30-m) resolution were added to the 40 period composites. These 42 bands 

were combined into a Google Earth Engine (GEE) Image Collection object, which enabled the full archive for SE 

and NE Asia to be accessed without specifying individual scenes so classification algorithms such as the RF could 

be executed in GEE. Figure 4 shows the compositing of the 10 bands over 4 periods, and the inclusion of elevation 

and slope bands to produce the 42-band variable input dataset. 
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Figure 4. Data cube of 30-m Landsat 7 and 8 median value composites for 3 periods from years 2013 thru 

2016. Also included are standard deviation for each image collected in 2015 along with STRM elevation and 

slope. 

 

b.     Theoretical description             

                                    

i.   Definition of Croplands 
For all products within GFSAD30, cropland extent is defined as, “lands cultivated with plants harvested for food, 

feed, and fiber, including both seasonal crops (e.g., wheat, rice, corn, soybeans, cotton) and continuous 

plantations (e.g., coffee, tea, rubber, cocoa, oil palm). Cropland fallows are lands uncultivated during a season 

or a year but are farmlands and are equipped for cultivation, including plantations (e.g., orchards, vineyards, 

coffee, tea, and rubber” (Teluguntla et al., 2015). Cropland extent also includes cropland fallows. Non-croplands 

consist of all land cover classes other than croplands and cropland fallows (Figure 5). 

 
Figure 5. Illustration of definition of cropland mapping using aerial and ground images of crops. Croplands 

included: (a) standing crop, (b) cropland fallows, and (c) permanent plantation crops. 
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ii.   Pre-processing 

A cloud masking algorithm was applied as a pre-processing step prior to classification. The algorithm used was 

based on the Temporal Dark Outlier Mask, written by Carson Stam and Ian Housman was used to mask cloud 

and cloud shadow from Landsat 7 and 8 TOA imagery. The code is a refinement of the Landsat Simple Cloud 

Score algorithm which is a function inside GEE (Google Earth Engine API 2017). 

The goal of this code is to identify clouds and mask out a sufficient radius around identified clouds to remove 

cloud shadows. Since this code does not seek to identify cloud shadows in particular, all pixels within a specific 

distance of the cloud are masked. This results in less data available to generate the composite and this was one of 

the reasons why composites needed to have multiple seasons and years of imagery. 

iii.   Random Forest 

The random forest classifier is relatively fast, nonlinear classifier that excels in producing good results from noisy 

data (Rodriguez-Galiano et al., 2012; Pelletier et al., 2016). It uses bootstrap aggregating (bagging) to form an 

ensemble of trees by searching random subspaces from the given data (features) and the best splitting of the nodes 

by minimizing the correlation between the trees. 

A random forest machine learning algorithm was used to do a binary classification of the SE and NE Asia 

region into cropland and non-cropland classes. Through experimentation, it was determined that 300 trees 

seemed a good balance between classification speed and accuracy. The default values were chosed for 

variablesPerSplit (√𝑛𝑏𝑎𝑛𝑑𝑠 ), minLeafPopulation (1), and bag Fraction (0.5). The outOfBagMode = true, in 

order to use different random subsamples of training data in generating trees in order to reduce model 

overfitting. 

 

iv.   Post-processing 
 

Post-processing image enhancements were used to create the final cropland extent product.  In pixel-based 

land cover classification projects, large homogenous areas of one landcover class can often contain single 

pixels or small numbers of pixels of another landcover class. Algorithms can be applied to remove these 

artifacts often called “salt and pepper,” improving the accuracy and the visual correctness of map products. 

Many image smoothing algorithms including focal filters (Eliason and McEwen 1990; Chan et al. 2005) were 

tried and produced better but still unsatisfactory results. 

Although applying focal filters usually do produce a more visually appealing and more useful classified map, 

the process often distorts boundaries between classes, and actually make the map appear less accurate in these 

places. To overcome this shortcoming, a pixel-sieving algorithm, based on code written by Richard Massy 

(personal communication) was used for post classification. This code smoothed based on a larger window set 

by the user (section c. iii). Based on visual comparison with simple focal filters, the smoothing algorithm used 

was at effective at removing salt and pepper artifacts while creating fewer edge distortions. 

An additional disadvantage of using post classification smoothers is that fine features such as roads are obscured 

in the smoothed product although they were present in the pre smoothed product. To correct for this, roads were 

masked out using Open Street Map Vector files. Additionally, coastlines and large waterbodies were given a 

separate classification to separate them from the non-cropland land class. The water masked used was all areas 

classified as ‘water bodies’ by the European Space Agency (ESA) GlobCover 2009, version 2.3 (Bicheron et al. 

2011). In some cases, particularly in deltas, river edges, and rice paddies, areas classified as cropland were also 

identified as water in. In these cases, the cropland classification remained unchanged. 
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c.     Practical description 

 

i.  Pre-processing 
 

Composite periods were chosen based on crop calendars, crop growing seasons, temperature and precipitation 

trends (World Bank 2016). The goal was to generate as many composites as possible while insuring that the 

composited were temporally broad enough to contain cloud free pixels across the entire SE and NE Asia. Due to 

reduce complexity, composited were generated for same temporal periods across all RAEZs. Ultimately, 

cloudfree image composites were generated for 3 periods DOY 1-120, 121-240, 241-365. 

 

Due to heavy cloud cover in the region, particularly in Kalimantan, Papua, and during monsoon season, there 

was not consistently one pixel that was not cloud masked when creating period composites for only 1 year.  

Untimely data from 2013-2016 was used to form the composites. The period composites were calculated by 

taking the median value from all unmasked pixels within the period within 2013-2016. 

If no cloud free pixels were found within the set year and DOY range (which was occasionally the case in isolated 

areas in cities and rainforest), a composite generated over the year period for DOY 1-365 was used to fill these 

areas. This was done to insure that no data gaps remained which could negatively affect the classification.  

The largest adjustable parameter in the cloud masking and compositing code other than temporal range is 

‘cloudThreshold’. This is a parameter of the Landsat Simple Cloud Composite algorithm, which is the basis of 

the algorithm used. The algorithm created an additional band named ‘cloud’ which extimates the probability 

that the land shown in each pixel is obscured by clouds. The range is from 0- 100 with 0 having no chance of 

being a cloud and 100 being complete confidence that the pixel was obscured by coudcover. Recommended 

values range from 10 to 30. After experimentation and visual comparisons, a cloudThreshold value of 20 was 

chosen, as it appeared to mask the majority of stratus, cumulus, and altocumulus clouds without masking much 

cloud free pixels (personal observation). 

 

ii. Random Forest (RF) Algorithm 

Because the sample size of the initial training dataset needs to be large for the RF classifier to work in such a 

complex region, the sample size was increased using an iterative sample selection procedure for training as 

illustrated in Figure 2.  

1.  Start with a large and high quality set of training samples for the random forest classifier that cover the 

variability in landcover within one of the areas or RAEZs.   

2. Extract the band values of the 42-band mosaic of pixels that are in the training dataset. Use this information 

to build a random forest classification model. 

3. Use above model to classify the RAEZs using the 30 m, 42-band mosaic. 

4. Visually assess the classification results to compare with existing reference maps as well as sub-meter to 

5-m very high spatial resolution imagery (VHRI); 

5. Add 'cropland' and 'non-cropland' samples in miss-classified areas by referencing VHRI. For cases hard to 

tell by interpretation (fallow land or abandoned fields), reference historical Landsat images. All the samples 

selected represent a 90 m x 90 m polygon. 
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6. Loop steps 1-5 with enlarged training dataset until classification becomes stable. 

The number of iterations required to achieve satisfactory classification was related to the complexity of the area. 

In RAEZs with well-developed agricultural land and strong seasons like Japan and Korea, relatively few iterations 

were needed whereas in Kalimantan, similarities between native forest and palm oil cause a lot of confusion and 

require more iterations to produce satisfactory results.  

 

iii. Post-processing Image Enhancements 

 
The smoothing algorithm has two stages, filling small gaps in large areas of cropland, and removing small isolated 

cropland areas surrounded by large areas of non-cropland. 

 

To remove small isolated areas of cropland (less than 12 Landsat pixels) surrounded by large areas on non-

cropland, the binary cropland non-cropland image was inversed so 0= cropland and 1= noncropland. Then a focal 

filter was extended to remove cropland pixels that did not have at least 12 neighbors. This was accomplished by 

resampling the map to 15 m x 15 m pixels and removing all cropland pixels that had fewer than 50 neighbors. 

Resampling was done since results looked superior than 30 m resolution. 50 was chosen as the minimum pixel 

number because one 30 m pixel = four 15 m pixels (4 x 12 = 48). 

 

To fill isolated gaps between large sections of cropland, a focal filter was extended to remove non-cropland pixels 

that did not have at least 25 non-cropland neighbors. This process was not sensitive to resampling, so the native 

30 m pixels were used to test neighbors. The number 25 was chosen based on visually reviewing several test sites 

across SE and NE Asia in increments of 5 from 10 to 50. 

Major roads were removed from the cropland extent layer. The most current version of Open Street Map (as of 

March 30 2017) was downloaded from https://extract.bbbike.org/ and minor roads (which could contain cropland) 

were removed. This vector file was then converted to a 30m raster file, where the centerline of the remaining road 

was masked, regardless of the road width. The following road classes as defined in the attribute table were retained 

(type = motorway or primary or secondary or truck). Figure 6 illustrates the effect of the two post processing steps 

to the final image. 

 

Figure 6. An illustration of the effects of pixel sieving and masking out major roads overlaid on VHRI where 

cropland is green and non-cropland is transparent. a) An image output from the stabilized RF classification. b) 

The same image after the pixel sieving algorithm has been applied. c) The same image after the major road mask 

has been applied. This image is centered at, 21.555°S, 165.494°E in New Caledonia. 

 

A water mask was applied to improve the visual look and usefulness of the cropland extent product. This mask 

was applied such that, if a pixel was classified as both cropland and water, its final classification was cropland. 
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The mask used was the ‘water bodies’ class within the 2009 Globcover version 2.3 product, released December 

2010 (Bicheron et al. 2011). Globcover is based on ESA MERIS satellite data and has a 300 m x300 m nominal 

ground resolution cell. This product was chosen because it has a global coverage, is rather recent (circa 2009) and 

has a 93% user’s accuracy for the water bodies class (Bontemps et al. 2010). 

 

iv. Programming and codes 
The cloud masking and compositing algorithms and the supervised machine learning algorithm, random forest, 

were coded on Google Earth Engine (GEE) using its Application Programming Interface (API) with Java scripts. 

The codes are made available in a zip file and are available for download along with this ATBD. 

 

v. Cropland areas of SE and NE Asia 

The GFSAD30SEACE dataset is available through the Land Processes Distributed Active Archive Center (LP 

DAAC). The same dataset is also available for visualization at https://croplands.org/app/map. Figure 7 shows 

the cropland extent in black overlaid the 7 RAEZs that were used to stratify SE and NE Asia. For any area in SE 

and NE Asia, croplands can be visualized by zooming into specific areas in croplands.org. 

 
Figure 7. Cropland Extent Product at 30-m for Southeast andR Northeast Asia in black(GFSAD30SEACE) 

 
 

Table 5 shows country-by-country cropland area statistics of SE and NE Asia, generated from this study and 

compared with several other sources. These sources included the MIRCA 2000, which is based on national census 

data (Stefan Siebert and Portmann, personal communication; Portmann, 2010) which were also updated in the 

year 2015, FAO of United Nation’s compiled statistics (FAO 2013), MODIS 500-m derived cropland areas from 

GRIPC (Salmon et al., 2015), and GLC30 (Chen et al., 2015). SE and NE Asia had total net cropland area (TNCA) 

estimated from GFSAD30SEACE of 127,540 kha. All other studies estimated TNCA between 93,270 kha for 

GIAM to 135,260 kha for MIRCA. FAO-estimated cropland area was 135,260 kha for the year 2009. The 

overwhelming proportion of the cropland areas (90%) Table 5 were in just 7 of the 18 countries. Compared to 

https://croplands.org/app/map
http://croplands.org/
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MIRCA2000 (Figure 8), the GFSAD30SEACE sometimes over-estimates and some-times under-estimates 

cropland areas.  

 

 
Figure 8. Country-by-country scatter plot of GFSAD30CESEA and MIRCA2000 (Portmann, 2010). 

 

On average, the GFSAD30SEACE underestimated MIRCA by about 20% relative to statistical data according 

to the slope derived from Figure 8.  This result is largely due to a large difference between the cropland area 

reported my GFSAD30CESEA and MIRCA2000 at 37,440 and 55,7500 kha respectively. However, the 

cropland area reported by MIRCA is likely high as FAO reports cropland as 42,600 kha. Other reasons for these 

significant differences in areas between GFSAD30SEACE when compared with MIRCA and FAO estimates 

include:  

(i) Ability of 30-m derived croplands data of GFSAD30SEACE to capture fragmented croplands; 

(ii) Ability of 30-m derived croplands data of GFSAD30SEACE to account for actual areas when 

compared with sub-pixel areas of higher resolution imagery derived cropland products (e.g., 

GRIPC, GLC); 
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(iii) Differences in how cropland data are gathered/estimated/calculated- Agricultural data reported 

by FAO is compiled from the statistics reported by individual countries, which is based on a 

wide range of methods, techniques and data (Bruinsma, J. 2011; World Bank, 2010).   Methods 

include: questionnaire-based surveys of farmers and food distributors, subjective eye estimates 

of agricultural extension agents, independent evaluations from NGOs, best estimates from 

national officials, and mixed methods. Since each country uses different methods, accuracies are 

variable. Some countries may not have resources to maintain proper statistics, which can result 

in erroneous results. Errors in country-based statistics could be due to, resource limitations, data 

quality issues, and a lack of objectivity (political or economic motivations). The 30-m derived 

cropland data of GFSAD30CESEA provides objective estimates relative to how other statistical 

data are obtained. 

(iv) Definition issues. Not every country adheres to the same definitions of croplands. Our study used 

TNCA definition to include planted crops along with croplands left fallow as well as permanent 

crops such as plantations (e.g., fruit trees, coffee and tea plantations, oil palm plantations etc). 

Many countries use similar definitions and many others use different definitions (e.g., leaving 

out cropland fallows or plantations).  

(v) Uncertainties inherent in all estimates. One can expect uncertainties in cropland areas maps (e,g., 

Figure 7) or areas estimated from different sources (e.g., Table 4) as a result of definitions, data 

used, methods adopted, and reporting mechanisms. GFSAD30SEACE uncertainties are gauged 

by the error matrices (Table 4). For GFSAD30SEA, uncertainties in cropland estimates mainly 

arose from three sources: (a) permanent cropland including palm oil, (b) aquaculture, (c) 

greenhouses. In SE and NE Asia, large areas of native forest have been cut and oil palm 

plantations have been planted in their place. In areas where permanent crops including oil palm 

and rubber have fully matured, it is difficult to separate these crops from native forest.  

Aquaculture is an important part of the farming system in SE Asia, frequently occurring as 

shrimp farms near the coast and stock water fishponds near rice fields that serve as a source and 

sink for irrigation as well as providing farmers additional income and protein from the fish in 

them. However, some ponds are not used for aquaculture and uncertainty exist between 

aquaculture, rice paddy, and waterbodies exclusively used for irrigation.  Per our definition, 

greenhouses are croplands, but difficult to map due to their differences in uncovered vegetation. 

Frequently, greenhouses are clustered together and can be identified visually with sub-meter to 

5-m very high-resolution imagery. In such areas, greenhouses were usually classified as 

croplands. In areas where greenhouses are infrequent, they were often classified as noncropland.  

 

There were several “outlier” countries in cropland area estimation when the GFSAD30SEACE product is 

compared to MIRCA2000 (Figure 8). There are many reasons for this. For example, GFSAD30SEACE methods 

and approaches are purely remote sensing based as opposed to predominantly survey-based statistics used in 

MIRCA2000. MIRCA2000 is a derived gridded dataset based on the FAOSTAT database (Portmann, 2010).  

Cropland was particularly hard to classify in many small Pacific Island Nations such as the in Solomon Islands 

and New Caledonia largely because many croplands are small fields surrounded by forest. In order to not omit 

agriculture, when composition of training samples was being modified, a greater emphasis was placed an adding 

cropland samples in omitted areas than adding non-cropland samples in co-mitted areas. This resulted in large 

amounts of natural vegetation and forest being classified as cropland in some areas. In other countries, it was 

difficult to distinguish permanent cropland from native forest so there were fewer cropland training samples than 

would be preferred, which resulted in lower cropland areas; some examples of this were in Papua New Guinea, 

Timor-Leste, and Vanuatu. Other countries have experienced rapid agricultural development in recent years, 

which is not reflected in previous studies; Cambodia is the best example of this. 
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Table 4. Net cropland areas of Southeast and Northeast Asia based on 30-m cropland product and comparison 

with other cropland products. 

 

 
 

 

     V.         Validation 
For this assessment, 1,750 samples over the all 7 RAEZs in SE and NE Asia were used to determine the accuracy 

of the final cropland extent map of SE and NE Asia. Error matrices were generated for each of the zones separately 

and for the entire SE and NE Asia region providing producer’s, user’s and overall accuracies (Story and 

Congalton, 1986, Congalton, 1991, and Congalton and Green, 2009).  
 

 

 

 

 



 

 - 18 - DCN 
Version 1.0 

 

 

 

Table 4. Independent assessment of overall-, producer-, and user-accuracies of Croplands for 7 zones of 

Southeast and Northeast Asia. TNCA = Total Net Cropland Area of SE and NE Asia   

   

 

 

 

 

The independent accuracy assessment team systematically tested each of the 7 refined agro-ecological zones or 

RAEZs (Figure 2) for accuracies. For the entirety of SE and NE Asia, the overall accuracy was 88.6% with 

producer’s accuracy of 81.6% (errors of omissions of 18.4%) and user’s accuracy of 76.7% (errors of 

commissions of 23.3%) for the cropland class. For each of the 7 RAEZs individually, the range of the (Table 4): 

(a) overall accuracies were 83.2-96.4%, (b) producer’s accuracies were 67.2-97.2%, and (c) user’s accuracies 

were 58.8-85.7%.  
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The overall accuracy in each zone ranged from 83% to 96%. Zone 7 had the highest overall accuracy since it has 

a relatively low proportion of agricultural area, which increased the overall accuracy. Overall, users’ accuracy 

(commission errors) was relatively lower than producer’s accuracies (omission errors) in general, which is the 

expected result when the RF algorithm is optimized to include as much croplands as much as possible so as to 

include all agricultural areas and permanent cropland. This results in a slight over classification of cropland area 

which lowers user’s accuracy.   

 

 VI.         Constraints and Limitations 
 

  

GFSAD30SEACE product mapped the croplands of SE and NE Asia @ nominal 30-m, which is the best known 

resolution for cropland mapping over all of Southeast Asia, Northeast Asia and Pacific Islands. It also has high 

levels of accuracies with weighted overall accuracies of 88.6%, producer’s accuracy of 81.6% and user’s accuracy 

of 76.7%.  

 

We tweaked the machine learning algorithms (section IV) to maximize capturing as much croplands as feasible 

automatically. This is a preferred solution to minimize how many croplands are missed/omitted from the final 

maps. A producer’s accuracy of 81.6% for the cropland class is equivalent to an 18.4% error of omission. This 

means 18.4% of SE&NE Asia croplands were missing in the product. We report a lower user’s accuracy (76.7%) 

for the cropland class for the continent, which translates to 23.3% commission error. By definition, this means 

that we over map 23.3% of the non-croplands as croplands. The decision to represent cropland extent with few 

omissions results in mapping some non-croplands as croplands. 

 

Wider and more extended field visits to different parts of the continent could be helpful in improved training and 

validation for future map products. These and numerous other issues (e.g., implementing machine learning 

algorithms and uncertainties inherent in them) will continue to exist in cropland mapping over such expansive 

and diverse areas as SE and NE Asia. Nevertheless, advances made in this study are significant, especially in 

developing a nominal 30-m cropland extent of the entire SE and NE Asia with good accuracies. 

 

Certain small islands in the Pacific are not classified and therefore data for these areas are not provided. 
 

VII. Publications 
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Fax:       605-594-6963 
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Web:  https://lpdaac.usgs.gov 
 
For the Principal Investigators, feel free to write to: 
Prasad S. Thenkabail  pthenkabail@usgs.gov  
 
For the 30-m cropland extent product GFSAD30SEACE (Southeast & Northeast Asia), please contact: 
Adam Oliphant  aoliphant@usgs.gov 
Prasad S. Thenkabail  pthenkabail@usgs.gov 
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More details about the GFSAD project and products can be found at: globalcroplands.org  
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